va Lecdune.
Noles

C@th_%tﬁms
Pz -6 Dl

Gi uetwons

Y EBxample 2: 4th-order Adams

(N C o fLeTLC

X(4+1) = X(4] + hO(F(X%, £(441]) + FL41)/2

shforth/Adams-Houlton
X+ = X(4) + hA(SSIE(L) - S9UF(4-1) + ITHF(L-2) - StF(4-31)/24
X[441] = X(4] + R*(9UE (X%, €(4+1]) + 199F(3) = SF(i-1) + F(1-2])/24
- Generally, Mdama-Bashforth/adans-Houlton methods of the same
order make good predictor/corrector pai

Why we want to use implicit method:

- AlL of these methods are trying to approximate
tli) [aeoe)
X[4+1] - X[4] = INTEGRAL X' (u) du = INTEGRAL F(X(a), u) du
w = tl] w- el
- Explicit method:
known
Pt -
wrsssaapes ol
- [T wasssEs/ /7111171771
. 1 e s I
" i eper V117711117171
1 | | \I1T1TIT T
©1-3] tli-2) et)

i) (101
Shaded area gives increment
This is extrapolation!

- Implicit method: (X[i+1] is treated as though known.)

Known
P i
wenenenapan 111170
N T aeen wnwsE /11111711771
B | e VLTI
A | wepes VIIIITII
T | i V1111111117
c3) cli-2) e

€] (o)
haded area gives increment
This is interpolation, inherently superior!

Soluing the implicit equation more accurately

- Equation has the form
z-60
- We have a good initial approximation call it z(0)

Caleulate successive approximations

2(ke1) = G(2(K])

. Theorem: If G has a Lipschitz constant M < 1 such that
1G@ -6 1wz -y 1

for any vectors Z, ¥, then the iteration above converges to the unique
solution of Z = .

In fact, each iteration reduces the error by a factor of M.
Corzecting more than once:

- The iteration will alvays work for sufficiently small h:
* F has a Lipschitz constant L, possibly large
* The equation (using 2 for X[i+1]) is

2= X(4] + hA(9UE(Z, L(441)) + 19%F(4) - S*F(i-1) + F(i-2))/24
+ The Lipschitz constant for "G" is S*h+L/24 .

-t bs vaally felc that a single correction is sutticient,
but such may not always be the ca

. Monitoring error with predictor/corrector methods

Consider 3rd order Adams-Bashforth/Adams-Moulton
¥ = exact solution for t(i+l] starting from X(1] at t(i)
X = X(4) + RH(23F() - 16 (1) + SAF(4-2)1/12
- ¥ /n) e ()
XU41) = X[4) + W(SUE(, E(001]) + 84F(4) = FL1-11)/22
. - ¥ - 203
£ 15 evaluated at dicferent places in the ervor cerms, buc
SR ertor S e can ue
X - X(41) = (10/24) $hoaen(3)
X(41) == ¥ - (/10)% (k¢ - X(541])
We could also extrapolate using
¥ = (/1007 4 (9/10)4X[441) + O(h%5)
@ L ML et ion of the somecton

if in doubt, perform additional corrections before testing error.

Getting started

- Use a one-step method of the same order as the multistep method,

©.9., a Runge-Kutta method.

the time step smaller than planned for continuing the
calculation.

References (in addition to those for the course generally)
- Hencici, Discrete Veriable Methods in Ordinary Differential Equations.
John Wiley & Sons, Inc., New York, 191
A. Marciniak. Numerical Solutions of the N-body Problem. D. Reidel
Publishing Co., Dordrecht, 1985.

D. Greenspan. Arithmetic Applied Mathematics. Pergamon Press
Series in Nonlinear Mathematics), Oxford, 1980.

(tnternational
R.A. LaBudde and D. Greenspan. Energy and Momentum Conserving Methods

of Nevicrary Order for. the Sumerical Integration of Equstions of
Motion. Numerische Mathematik, v

0ded.

Ordinary Differential Equations

Part 2

Stability of multi-step methods

Methods considered so far (explicit or implicit) have the form
X(441) = X(4) + he (o)

Consider an implicit method due to Miln

X(541) = X[4-1) + he(F[441] + 4°F(4) + FLi-1] 1/3

(simpson’s rule as a corrector, in effect)

Rs h -=-> 0 we obtain a liniting difference equation:
X[141) - X14] = 0 A-B, A
X[4#1) + 0%X(4) - X(1-1) = 0 milne

and similarly for other multi-step methods

Homogeneous difference equations with constant coefficients:
For the equation
AlkI*x(44%] + alk-11%x[i4k-1] + . . .+ a(0)*x(4] = O

consider solutions of the form x[i] = z°i (z is some number), so

K1 (44K ¢ Al 2N (k) ¢ . L. % al0)%2n) = 0
k12200 + alle-l)tz kD) + . o .+ al0) = 0
S0 xoots of p(x) = a(KI*E M) + alK-IEN D) ¢ L+ al0)

generate solution:

1o 8 root of p(x) of mitiplicity q > 1 then all of the
Forlowing are soturion

x(4) = v

X(4) = 1runt

X[4) = 443 = DA - g+ 2R

Stability condition:

For a convergent milti-step method, Al of tne (poseibily conplex)
Zoots of the associated polynomial p(z) must sati

ol <= 1
and 1€ lul = 1 then u must be simple.

If this condition fails, the difference method has erroneous components

nolea

which become lazge as h --> 0.
Weak stability:

ALL of the methods discussed are stable. Milne’s method, however

®

as roots, hence the oscillatory solution

x(4) = (D

which can cause trouble if the solution is rapidly decreasing.
Milne's method is "weakly stable".

strong stability:
P(1) =0, Iul <1 for all roots u 1= 1 .
. A-M) are best for general use

Strongly stable methods (e.g., A-

Boundary Value Problems

® e
rm - 2o + xien

X0 - +0h2)

w2
For - a)/n and t[4) = a + i'h we obtain approximations
M 2R Fron e equar ton
2%x(1) - x(2) +ne2eel) - xa

- x(1) + 2%x(2) - x(3) +ne2ee2) = 0

X[5-1) + 2x(4) - A[S41) + RAZOELL] = O

“x(a=2] + 2*x(n-1] + K"2*E(n-1) = xb
where £(4) = £(x(1], t(i])

We have a tri-diagonal linear system

AX =B - he2eE

"y T ey
21 o i ox2 1 ol | of2)
. [R R | (-
i P=1 0 1 -n2s
[B A I [
o Aoz g w2y 1 0 I fin-2)
U2 o xinl) I_w) I_ -]
which can be solved directly.
£ depends on x and t
- Solve non-linear system iteratively
- Requires repeated solution of tri-diagonal linear system
*+ Direct solution requires effort O(n) per iteration
+ Tricky to perform in parallel
* Parallel iterative solution of tri-diagonal system
might be satisfactory
- Mgher-order appexinations to x'* might be used, in uhich ca

TN R ST hes more non_rers 0Ef-aiigonal elements

Eigenvalue Problems

Another type of boundary-value probler

X7 (£) + lambdatq(t)*x(t) = 0, @ <= € <= b

X(a) = x(®) = 0, q(t) >0 for a <=t <= b
for which we wish to determine both lambda (a scalar) and x.
Discretize

for the standard boundary-value problem:
A X + he2*lambdarg X = 0

ace) 1

aczn o

where @ = | . 1

| 1

[. |

I a(tta-1)) I
Reurite the matrix equation as

Q(-1) A X + n"2+lanbda*x = 0

Q~(-1) A X = -h*2*lambdarx

to obtain a standard, matrix eigenvalue problem.

Automatic Step-size Adjustment for One-step Methods

s, treat this subject in detail. These notes are based
Y Tarsely'on ther alscussion:

In general we want
Lazge steps when solution is changing slowly
Small steps when solution is changing rapidly

Using a fixed step h throughout is likely to be inefficient.

Basic id

On cach time scep:
Integrate from t to t+h using step h and also h/2
Estimate error from the two results
If error too large, determine reduced h, repeat
Otherwise, extrapolate for result of this step

estimate h for next step

Accuraey should be a litele betcer than that corresponding to o
step h/2 due to extrapolatior

- Bffort ds dess than 1.5 times effort for step /2, since F(X, ©)
is used tus

Detatls

Suppose method is M(t,X,h), with local error O(h*m). To advance
one step from h
£ t0, X(t) = X0
proceed as follows: .
caleulat
X1 = X0 + haM(£0, X0, h) { one step of h)

X+ = X0 + R*M(E0, X0, h/2)

(two steps of h/2)
Y X2 = X% 4 RAM(E0SR/2, X%, B/2)

I 2 is the exact solution starting from X0 then
2= X1+ 2°mehomte + O(h (med))

Z=X2+ 2thtmte + O(h (mel))

2= X2+ (X2 - XL)/@%(@m-1) - 1) + O(ht(mel))

o2 - XD/ @~ me1) - 1)

but this is risky because of O(h*(m#1)). The customary, and safer, method
1s to use

o2 - x1)

as the error indicator. We consider how to use this a little later.

Adjusting b

is the error we want, and El the error obtained with step hl,
then'the step which yields errors Lo

1m0 pam
no - il (approximately)
Y
Let hl = 'h value just used, El = corresponding error

If EL > EO the step fails, repeat with h = hO

TE L o 50 gonepe this step, oxlcuiate 10 s
inate for next

Determining the error

We might use any of several criteria, depending on the behavior of
the components of X
, - Relative error (components of very different magnitudes)
- Absolute error (bounded components, perhaps oscillating)
- Different requirements for different components

- May wish to control global error, not just error/step

General scheme:

User gives:

eps - overall tolerance, eps > 0

Goal:
IX1 - X01 <= eps* |XSC|

