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Y EBxample 2: 4th-order Adams
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X(4+1) = X(4] + hO(F(X%, £(441]) + FL41)/2

shforth/Adams-Houlton
X+ = X(4) + hA(SSIE(L) - S9UF(4-1) + ITHF(L-2) - StF(4-31)/24
X[441] = X(4] + R*(9UE (X%, €(4+1]) + 199F(3) = SF(i-1) + F(1-2])/24
- Generally, Mdama-Bashforth/adans-Houlton methods of the same
order make good predictor/corrector pai

Why we want to use implicit method:

- AlL of these methods are trying to approximate
tli) [aeoe)
X[4+1] - X[4] = INTEGRAL X' (u) du = INTEGRAL F(X(a), u) du
w = tl] w- el
- Explicit method:
known
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Shaded area gives increment
This is extrapolation!

- Implicit method: ( X[i+1] is treated as though known. )

Known
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haded area gives increment
This is interpolation, inherently superior!

Soluing the implicit equation more accurately

- Equation has the form
z-60
- We have a good initial approximation call it z(0)

Caleulate successive approximations



2(ke1) = G(2(K])

. Theorem: If G has a Lipschitz constant M < 1 such that
1G@ -6 1wz -y 1

for any vectors Z, ¥, then the iteration above converges to the unique
solution of Z = .

In fact, each iteration reduces the error by a factor of M.
Corzecting more than once:

- The iteration will alvays work for sufficiently small h:
* F has a Lipschitz constant L, possibly large
* The equation (using 2 for X[i+1]) is

2= X(4] + hA(9UE(Z, L(441)) + 19%F(4) - S*F(i-1) + F(i-2))/24
+ The Lipschitz constant for "G" is S*h+L/24 .

-t bs vaally felc that a single correction is sutticient,
but such may not always be the ca

. Monitoring error with predictor/corrector methods

Consider 3rd order Adams-Bashforth/Adams-Moulton
¥ = exact solution for t(i+l] starting from X(1] at t(i)
X = X(4) + RH(23F() - 16 (1) + SAF(4-2)1/12
- ¥ /n) e ()
XU41) = X[4) + W(SUE(, E(001]) + 84F(4) = FL1-11)/22
. - ¥ - 203
£ 15 evaluated at dicferent places in the ervor cerms, buc
SR ertor S e can ue
X - X(41) = (10/24) $hoaen(3)
X(41) == ¥ - (/10)% (k¢ - X(541])
We could also extrapolate using
¥ = (/1007 4 (9/10)4X[441) + O(h%5)
@ L ML et ion of the somecton

if in doubt, perform additional corrections before testing error.

Getting started

- Use a one-step method of the same order as the multistep method,



©.9., a Runge-Kutta method.

the time step smaller than planned for continuing the
calculation.
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Ordinary Differential Equations

Part 2

Stability of multi-step methods

Methods considered so far (explicit or implicit) have the form
X(441) = X(4) + he (o)

Consider an implicit method due to Miln

X(541) = X[4-1) + he( F[441] + 4°F(4) + FLi-1] 1/3

(simpson’s rule as a corrector, in effect)

Rs h -=-> 0 we obtain a liniting difference equation:
X[141) - X14] = 0 A-B, A
X[4#1) + 0%X(4) - X(1-1) = 0 milne

and similarly for other multi-step methods

Homogeneous difference equations with constant coefficients:
For the equation
AlkI*x(44%] + alk-11%x[i4k-1] + . . .+ a(0)*x(4] = O

consider solutions of the form x[i] = z°i (z is some number), so

K1 (44K ¢ Al 2N (k) ¢ . L. % al0)%2n ) = 0
k12200 + alle-l)tz kD) + . o .+ al0) = 0
S0 xoots of p(x) = a(KI*E M) + alK-IEN D) ¢ L+ al0)

generate solution:

1o 8 root of p(x) of mitiplicity q > 1 then all of the
Forlowing are soturion

x(4) = v

X(4) = 1runt

X[4) = 443 = DA - g+ 2R

Stability condition:

For a convergent milti-step method, Al of tne (poseibily conplex)
Zoots of the associated polynomial p(z) must sati

ol <= 1
and 1€ lul = 1 then u must be simple.

If this condition fails, the difference method has erroneous components

nolea



which become lazge as h --> 0.
Weak stability:

ALL of the methods discussed are stable. Milne’s method, however

®

as roots, hence the oscillatory solution

x(4) = (D

which can cause trouble if the solution is rapidly decreasing.
Milne's method is "weakly stable".

strong stability:
P(1) =0, Iul <1 for all roots u 1= 1 .
. A-M) are best for general use

Strongly stable methods (e.g., A-

Boundary Value Problems

® e
rm - 2o + xien

X0 - +0h2)

w2
For - a)/n and t[4) = a + i'h we obtain approximations
M 2R Fron e equar ton
2%x(1) - x(2) +ne2eel) - xa

- x(1) + 2%x(2) - x(3) +ne2ee2) = 0

X[5-1) + 2x(4) - A[S41) + RAZOELL] = O

“x(a=2] + 2*x(n-1] + K"2*E(n-1) = xb
where £(4) = £(x(1], t(i])

We have a tri-diagonal linear system

AX =B - he2eE
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which can be solved directly.
£ depends on x and t
- Solve non-linear system iteratively
- Requires repeated solution of tri-diagonal linear system
*+  Direct solution requires effort O(n) per iteration
+  Tricky to perform in parallel
*  Parallel iterative solution of tri-diagonal system
might be satisfactory
- Mgher-order appexinations to x'* might be used, in uhich ca

TN R ST hes more non_rers 0Ef-aiigonal elements

Eigenvalue Problems

Another type of boundary-value probler

X7 (£) + lambdatq(t)*x(t) = 0, @ <= € <= b

X(a) = x(®) = 0, q(t) >0 for a <=t <= b
for which we wish to determine both lambda (a scalar) and x.
Discretize

for the standard boundary-value problem:
A X + he2*lambdarg X = 0

ace) 1

aczn o

where @ = | . 1

| 1

[ . |

I a(tta-1)) I
Reurite the matrix equation as

Q(-1) A X + n"2+lanbda*x = 0

Q~(-1) A X = -h*2*lambdarx

to obtain a standard, matrix eigenvalue problem.



Automatic Step-size Adjustment for One-step Methods

s, treat this subject in detail. These notes are based
Y Tarsely'on ther alscussion:

In general we want
Lazge steps when solution is changing slowly
Small steps when solution is changing rapidly

Using a fixed step h throughout is likely to be inefficient.

Basic id

On cach time scep:
Integrate from t to t+h using step h and also h/2
Estimate error from the two results
If error too large, determine reduced h, repeat
Otherwise, extrapolate for result of this step

estimate h for next step

Accuraey should be a litele betcer than that corresponding to o
step h/2 due to extrapolatior

- Bffort ds dess than 1.5 times effort for step /2, since F(X, ©)
is used tus

Detatls

Suppose method is M(t,X,h), with local error O(h*m). To advance
one step from h
£ t0, X(t) = X0
proceed as follows: .
caleulat
X1 = X0 + haM(£0, X0, h) { one step of h )

X+ = X0 + R*M(E0, X0, h/2)

( two steps of h/2 )
Y X2 = X% 4 RAM(E0SR/2, X%, B/2)

I 2 is the exact solution starting from X0 then
2= X1+ 2°mehomte + O(h (med))

Z=X2+ 2thtmte + O(h (mel))



2= X2+ (X2 - XL)/@%(@m-1) - 1) + O(ht(mel))

o2 - XD/ @~ me1) - 1)

but this is risky because of O(h*(m#1)). The customary, and safer, method
1s to use

o2 - x1)

as the error indicator. We consider how to use this a little later.

Adjusting b

is the error we want, and El the error obtained with step hl,
then'the step which yields errors Lo

1m0 pam
no - il (approximately)
Y
Let hl = 'h value just used, El = corresponding error

If EL > EO the step fails, repeat with h = hO

TE L o 50 gonepe this step, oxlcuiate 10 s
inate for next

Determining the error

We might use any of several criteria, depending on the behavior of
the components of X
, - Relative error (components of very different magnitudes)
- Absolute error (bounded components, perhaps oscillating)
- Different requirements for different components

- May wish to control global error, not just error/step

General scheme:

User gives:

eps - overall tolerance, eps > 0

Goal:
IX1 - X01 <= eps* |XSC|






